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Purpose: Utilization of respiratory correlated four-dimensional cone-beam computed tomography
(4DCBCT) has enabled verification of internal target motion and volume immediately prior to treat-
ment. However, with current standard CBCT scan, 4DCBCT poses challenge for reconstruction due
to the fact that multiple phase binning leads to insufficient number of projection data to reconstruct
and thus cause streaking artifacts. The purpose of this study is to develop a novel 4DCBCT recon-
struction algorithm framework called motion-map constrained image reconstruction (MCIR), that
allows reconstruction of high quality and high phase resolution 4DCBCT images with no more than
the imaging dose as well as projections used in a standard free breathing 3DCBCT (FB-3DCBCT)
scan.
Methods: The unknown 4DCBCT volume at each phase was mathematically modeled as a combina-
tion of FB-3DCBCT and phase-specific update vector which has an associated motion-map matrix.
The motion-map matrix, which is the key innovation of the MCIR algorithm, was defined as the ma-
trix that distinguishes voxels that are moving from stationary ones. This 4DCBCT model was then
reconstructed with compressed sensing (CS) reconstruction framework such that the voxels with high
motion would be aggressively updated by the phase-wise sorted projections and the voxels with less
motion would be minimally updated to preserve the FB-3DCBCT. To evaluate the performance of
our proposed MCIR algorithm, we evaluated both numerical phantoms and a lung cancer patient.
The results were then compared with the (1) clinical FB-3DCBCT reconstructed using the FDK,
(2) 4DCBCT reconstructed using the FDK, and (3) 4DCBCT reconstructed using the well-known
prior image constrained compressed sensing (PICCS).
Results: Examination of the MCIR algorithm showed that high phase-resolved 4DCBCT with sets
of up to 20 phases using a typical FB-3DCBCT scan could be reconstructed without compromising
the image quality. Moreover, in comparison with other published algorithms, the image quality of the
MCIR algorithm is shown to be excellent.
Conclusions: This work demonstrates the potential for providing high-quality 4DCBCT during on-
line image-guided radiation therapy (IGRT), without increasing the imaging dose. The results showed
that (at least) 20 phase images could be reconstructed using the same projections data, used to re-
construct a single FB-3DCBCT, without streak artifacts that are caused by insufficient projections.
© 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4829504]
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1. INTRODUCTION

Currently, image guided radiation therapy (IGRT) utiliz-
ing external imaging devices to verify patient pose just be-
fore/during treatment is widely used.1, 2 In particular, cone-
beam computed tomography (CBCT) is a commonly used
imaging device mounted on linear accelerators for IGRT,
due to its useful role in providing patients’ (1) anatomic
information,3, 4 (2) geometric information,5, 6 and (3) CT num-
bers for possible dose calculations and on-line/off-line reop-
timization of plans.7, 8 With aid of CBCT, the implementation
of various image guidance and adaptive techniques became
possible.9–12 There is minimal doubt that CBCT has a promi-
nent role in current radiotherapy practices.

The CBCT acquisition time is long (typically 1 min for
thoracic/abdominal sites) due to limited speed of the linear ac-
celerator gantry.13–15 In addition, there are challenges in veri-
fying the trajectory of mobile tumors caused by breathing. For
example, when CBCT is applied to thorax, the image quality
can be heavily degraded due to the respiratory-induced mo-
tion. Serious motion-induced artifacts compromise the effec-
tiveness of the CBCT usage during IGRT.16

To overcome this problem, four-dimensional CBCT
(4DCBCT) has been proposed to provide time/phase-resolved
volumetric images.17–21 In such, all of the x-ray projec-
tions are first retrospectively grouped into different respira-
tory phase bins according to the breathing signals tagged to
each projection. A 3DCBCT image set, for each breathing
phase, is then reconstructed independently, yielding an image
with much less motion-induced artifacts. The capability of
4DCBCT to significantly reduce the motion artifacts and en-
hance the target localization accuracy has been evaluated, al-
lowing up to 50% reduction in planning target volume (PTV)
size.22, 23

Although 4DCBCT is capable of improving the motion ar-
tifacts and target localization accuracy, it poses another chal-
lenge for reconstruction. In fact, unless oversampling of x-ray
projections are taken (which unavoidably increases the imag-
ing dose17, 22, 23), the phase binning approach leads to insuffi-
cient number of projections in each phase bin and thus causes
severe streaking artifacts, when a standard 3DCBCT scanning
protocol and reconstruction algorithms [e.g., FDK (Ref. 24)]
are applied. This is also known as the under-sampled artifact
where the number of projections is insufficient to reconstruct
a reasonable quality CBCT images.

In the past, many attempts have been made toward remov-
ing or relieving this problem. For example, scanning proto-
cols of multiple gantry rotations and slow gantry rotations
have both been proposed to considerably increase the num-
ber of projections per phase.19, 21, 25 In either case, reducing
the mAs to avoid increasing the imaging dose to patients
inevitably degrades image quality. Advanced reconstruction
techniques have also been proposed. For example, motion es-
timation and correction methods have been incorporated into
the reconstruction process.26 It has also been proposed to
split the reconstruction region according to a volume of in-
terest and treat the reconstructions separately.27 Meanwhile,
a number of research efforts have been made on postpro-

cessing of the 4DCBCT images. For instance, a prior image-
based approach28 has been developed by first reconstructing
a blurred CBCT image with all projections and then using
it to estimate and remove the streaking artifacts. Deforming
all phase images onto a single representative one has also
been tried.29, 30 The efficacy of these approaches, however,
largely depends on the accuracy of the algorithms involved,
such as the deformable image registration algorithms. One of
the most advanced approaches to date is the prior image con-
strained compressed sensing (PICCS) algorithm which can re-
construct high quality 4DCBCT without increasing the imag-
ing dose.31 It first reconstructs a prior 3D image by using all
projections and then reconstructs each phase image by regu-
larizing both the total variation of the image itself and the total
variation of the difference from the prior image.32–34 Due to
its high quality imaging performance and relative simplicity
of the algorithm, PICCS has been utilized in many different
applications.32–34, 51, 52

In this study, we propose a novel 4DCBCT reconstruc-
tion algorithm called motion-map constrained image recon-
struction (MCIR) that utilizes a motion-map to achieve high-
quality images from highly under-sampled projections. The
MCIR algorithm allows (1) reconstruction of high quality
4DCBCT images with no more than the imaging dose used
in a standard 3DCBCT scan, and (2) high phase-resolved im-
ages with up to 20 phases using a typical clinical 3DCBCT
scan. Comparisons of our novel approach with the standard
FDK and PICCS algorithms are presented in detail using nu-
merical phantoms and a clinical lung cancer patient case.

2. METHODS AND MATERIALS

2.A. 4DCBCT basics

A common goal of the CBCT reconstructions is to solve
the problem of finding the unknown attenuation coefficients
from the projections data acquired at various gantry angles. In
4DCBCT, the goal is to reconstruct multiple 3DCBCT image
sets from the phase-resolved projections. To ensure high qual-
ity images, it is traditionally necessary to acquire enough pro-
jections at each phase bin, which inevitably increases imaging
dose, otherwise the under-sampled projections would lead to
artifact-rich images. The main contribution of our proposed
MCIR algorithm is to address this issue by generating high
quality images under the constraint of under-sampled projec-
tions via intelligently differentiating the moving voxels from
the stationary ones.

2.B. The MCIR algorithm

The key intuition of the MCIR algorithm lies in the obser-
vation that when a patient exhibits respiratory motion, not all
parts of the patient’s anatomy are in motion. For example, the
tissues inside the lungs (e.g., diaphragm and tumor) move sig-
nificantly whereas tissues outside the lungs are nearly station-
ary (e.g., bones, muscles). Suppose we can distinguish voxels
between the ones that are moving and stationary via what we
call a “motion-map,” then a series of phase images can be
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reconstructed by updating the FB-3DCBCT with only those
voxels that are moving according to that corresponding phase
while keeping the voxels constant for those that are station-
ary. The main advantage of such an approach is that since the
number of mobile voxels to be reconstructed in each phase is
less than the total voxels in a 3DCBCT image, the overall un-
knowns in each phase is now (much) smaller. Therefore, there
is now higher measurements-to-unknowns ratio to reconstruct
higher quality images due to this distinction.

In this paper, the matrices are denoted as a boldface-
uppercase letters and the vectors are denoted as a boldface-
lowercase letters. In the MCIR algorithm, we represent the
unknown phase image volume as

xphase = x3D + U1/2kphase where xphase ∈ RM
+ ,

U ∈ RM×M
+ and kphase ∈ RM, (1)

where xphase = unknown 4DCBCT phase image, x3D = a pri-
ori reconstructed FB-3DCBCT (reconstructed with the FDK
(Ref. 24) or SART (Ref. 35), U = diagonal motion-map ma-
trix, M = volume dimension, and kphase = phase-specific up-
date vector. Equation (1) illustrates that our approach is to
start from the FB-3DCBCT and then identify the phase spe-
cific motion information by referencing the motion-map ma-
trix U. The diagonal motion-map matrix U is defined mathe-
matically as follows:

U = diag{a1, a2, a3, . . . aM} where ai = [0, 1]. (2)

Here, ai corresponds to the ith diagonal element of the matrix
U, where the value ranges between 0 and 1 with 1 when the
voxel value varies largest with the respiratory motion and 0
when it is constant irrespective of breathing. The main reason
for adding the square root term on U in Eq. (1) is to simplify
the updating equation for solving the xphase, which we will
show shortly.

Remember that in 4DCBCT reconstruction, the projection
data that are available for each phase is limited in number
due to the binning process. Therefore, it is important to select
reconstruction algorithm(s) that appropriately handles the sit-
uation to give you an adequate quality image. Recent studies
have shown that compressed sensing type of CBCT recon-
struction based on the total variation formulation has shown
that efficient reconstruction can be performed with a lim-
ited number of projections.34, 36–40 Thus, utilizing this theory,
keeping the phase volume xphase as an unknown, the mathe-
matical model for the MCIR algorithm is setup to solve the
constrained convex optimization of the form:

min
xphase

f (xphase) = ‖Aphasexphase − bphase‖2
2 + λTV(xphase)

s.t. xphase
195≥ 0, (3)

where Aphase = Radon transform operator at a specific phase,
bphase = phase sorted projection data, λ = regularization con-
stant, and TV( · ) = total variation (TV) regularization term.
The TV term we used in this study is defined as

TV(x) =
∑
i,j,k

√
[x(i + 1, j, k) − x(i, j, k)]2 + [x(i, j + 1, k) − x(i, j, k)]2 + [x(i, j, k + 1) − x(i, j, k)]2, (4)

where i, j, and k correspond to left-right (LR), anterior-
posterior (AP), and cranial-caudal (CC) coordinates, respec-
tively. Here, the elements of the vector x are indexed by the
3D coordinates for notational simplicity. In this form, the first
term in Eq. (3) is the fidelity term, which enforces the fidelity
of xphase with the sorted projection data. The second term, the
regularization term, promotes sparsity inherent in the x-ray
attenuation characteristics of the human body.

In Eq. (1), we have defined the 4DCBCT phase volume
xphase as a combination of FB-3DCBCT with the phase-
specific update vector kphase that is weighted by the motion-
map matrix U. The FB-3DCBCT, x3D, can be easily com-
puted using all available projections. Assuming that we al-
ready know the motion-map matrix U, which we will discuss
in Sec. 2.C, we can solve Eq. (3). This is done by a gradient
descent type approach where Eq. (1) is substituted into Eq. (3)
and the gradient of the right-hand side of Eq. (3) with respect
to kphase is calculated:

xn+1
phase = xn

phase − αU
[
2AT

phase

(
Aphasexn

phase − bphase
)

+ λ∇TV
(
xn

phase

)]
, (5)

where n = number of iterations, α = gradient step size,
AT

phase = back-projection matrix, and ∇ = gradient opera-
tor. Note here that by modeling the xphase with the square root
U [in Eq. (1)], the updating equation simplifies to multiplying
with U, instead of its square. A detailed derivation of Eq. (5)
is presented in the Appendix.

In Eq. (5), we can notice that the gradient of the second
term of Eq. (3) with respect to kphase simply becomes the prod-
uct of U with the ∇TV (Ref. 40) (similar to taking the gradient
with respect to xphase). As a result, the updating energy will
mainly be imparted on the voxels with the associated weight-
ing factor ai closer to 1 while spending little energy to update
the voxels with values closer to 0. For those stationary voxels
having ai = 0 in U, will be preserved with the original values
from the FB-3DCBCT, x3D.

2.C. Motion-map calculation

In Sec. 2.B, we have mathematically formulated the up-
dating equation of the MCIR algorithm [Eq. (5)] to mini-
mize the cost function given by Eq. (3). As you can imag-
ine, calculating U is a critical step in the implementation.
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The effectiveness of the MCIR algorithm is largely dependent
upon how well the motion-map represents the true mobile
anatomy.

There can be a number of ways to calculate the motion-
map of a patient. One intuitive way is to utilize a planning
4DCT dataset via calculation of deformable motion vectors.
However, this approach may not be very useful since the pa-
tient posture must be very close, if not identical, between the
4DCT and at the time of the treatment. In addition, a consid-
erable motion-to-motion variation on daily basis41 as well as
with registration uncertainty42 exists which may hamper the
precision of the motion-map.

In this study, we have developed a novel and effective
method that obtains the motion-map directly from the phase-
wise updated FB-3DCBCT. In this way, no external, prior-
knowledge information is needed to obtain the motion map.
The idea behind this concept is that when the FB-3DCBCT is
reconstructed, the regions that are subject to varying degrees
of respiratory motion would contain a larger data inconsis-
tency (i.e., motion-induced artifacts) compared to the regions
that are stationary. Intuitively, if we can incorporate such in-
formation and reconstruct with an effective strategy, a precise
motion-map matrix U can be calculated. This is our intuition,
which led to the following.

To calculate the motion-map matrix U, first, the FB-
3DCBCT is reconstructed using all of the projections. For
this, any reconstruction method can be used [e.g., the FDK
(Ref. 24) or other compressed sensing type algorithms]. In
this study, we used the FDK approach for its computa-
tional efficiency. Second, for each phase, the FB-3DCBCT
is updated with the phase-wise sorted projection data while
minimizing the one-norm difference from the original FB-
3DCBCT as a regularization term. Third, the sub-motion-
error vector for each phase, denoted by uphase, is calculated by

taking the difference between the updated FB-3DCBCT with
the original FB-3DCBCT. Mathematically, the sub-motion-
error vector can be represented as

uphase = x3D − p∗
phase where uphase ∈ RM and p∗

phase ∈ RM
+ ,

(6)

where

p∗
phase = arg min

{‖Apphase − bphase‖2
2

+ η‖x3D − pphase‖1
}

s.t. pphase ≥ 0. (7)

Here, pphase = updated FB-3DCBCT with phase-wise sorted
projection data with one-norm constraint, x3D = a priori re-
constructed FB-3DCBCT, and η = regularization constant for
the one-norm term. In Eq. (7), we can notice that the original
FB-3DCBCT, x3D, is being updated with corresponding phase
specific information, p∗

phase, while promoting sparsity in the
difference between the original FB-3DCBCT and the updated
value, pphase. In this way, we can rigorously update the original
FB-3DCBCT with phase information in the subvolumes that
contain motion-induced data inconsistency while keeping the
consistent regions with values from the original FB-3DCBCT.
Then, by taking the difference between the FB-3DCBCT and
p∗

phase, the sub-motion-error vector uphase can be calculated,
representing the motion-errors corresponding to each phase.
Finally, when sub-motion-error vector has been calculated for
all phases, we define the ith diagonal element ai of the nor-
malized motion-map matrix U as

ai =
N∑

phase=1

|uphase(i)|/ max
1≤j≤M

{
N∑

phase=1

|uphase(j )|
}

, (8)

where N = total number of phase bins that are sorted.
Figure 1 illustrates the process of calculating U. It can be seen

FIG. 1. Illustration of generating a motion-map, U. First, xFB-3DCBCT is reconstructed using a conventional algorithm (e.g., FDK). Second, sub-motion-error
vector for each phase (uphase) is calculated by taking the difference between the updated FB-3DCBCT with the original FB-3DCBCT. Finally, the motion-map
matrix U is calculated by normalizing the absolute sum of sub-motion-error vector uphase at all phases. As can be seen, image U exhibits very low values (dark
∼0), except near the circular objects that are moving (white ∼1).
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TABLE I. Reconstruction times for each algorithm to process 100 iterations,
for 20 phase images. All times are in seconds.

[Reconstruction Algorithms] FDK CS PICCS MCIR

Prior-image reconstruction N/A 3.4 3.4 3.4
Motion map-calculation N/A N/A N/A 64.5
Average comp. time/iteration N/A 14.2 14.6 14.4
Total comp. time 4.1 1422.7 1467.1 1507.8

that a large proportion of U exhibits very low values (close to
0) except the regions that contain significant motion.

Note that Eq. (7) to acquire the phase updated FB-
3DCBCT is similar to Eq. (3), which is the main mathemati-
cal formulation of the MCIR algorithm. The main difference
between the two is that when solving Eq. (3), the unknown
4DCBCT volume is mathematically modeled as a combina-
tion of FB-3DCBCT and phase-specific update vector asso-
ciated with the motion map matrix U [Eq. (1)], whereas in
Eq. (7), such model cannot be applied since the motion map
matrix U is unknown. Moreover, the main purpose of solv-
ing Eq. (7) is to identify the regions that are inconsistent with
the phase specific projection data and therefore, the one-norm
difference term between the FB-3DCBCT and pphase is used
as a regularization term to promote as many identical voxels
between them as possible. On the other hand, Eq. (3) uses the
TV regularization term to promote attenuation characteristics
that improves the overall image quality.

Solving Eq. (7) for all phases can be a time-consuming
task. Fortunately, it turns out that approximately solving the
problem with only a few iterations provides enough informa-
tion for generating the desired motion-map. As a result, the
motion-map can be generated with much less computations
compared to that required for reconstructing the 4DCBCT
phase images, indicating that the overall overhead for gen-
erating the motion-map is relatively small. See Table I for a
list of time commitments per task.

2.D. MCIR implementation

After the motion-map U is generated, Eq. (5) has all of the
necessary data to iteratively search for the best solution, for
each 4DCBCT phase, with the original FB-3DCBCT as the

starting point. The MCIR algorithm pseudo code is laid out
in Fig. 2. The process is as follows. First, the FB-3DCBCT
is reconstructed with the FDK algorithm using all x-ray pro-
jections that were obtained. Second, the FB-3DCBCT is up-
dated with phase-wise sorted projections such that regions
containing the motion induced data inconsistency are updated
with the phase information while enforcing consistency on
the motion-free regions with the original values from the FB-
3DCBCT. The updated volume is subtracted with the original
FB-3DCBCT to generate the sub-motion-error vector, u, for
each phase. Third, the absolute values of the sub-motion-error
vectors are element-wise added and normalized to the maxi-
mum value to obtain the motion-map matrix U. Finally, for
all phases, the MCIR is performed by initializing all voxels as
the original FB-3DCBCT and updating the values according
to Eq. (5), at each iterative step.

As can be noticed, the MCIR algorithm is an iterative pro-
cess, which is computationally heavy, taking hours of CPU
time (∼24–30 h) to reach the solution. Efficiently solving
this would require (1) parallel programming with proper hard-
ware, and (2) deriving a mathematical formulation to achieve
fast-solution-convergence. To handle the former issue, we
have parallelized our code with the graphics processing unit
(GPU) in the CUDA C/C++ programming environment. In
this way, major computational tasks such as (1) forward pro-
jection, (2) back projection, and (3) vector as well as filter
operations can be efficiently parallelized.43–45 For the latter is-
sue, we have used our recently published gradient projection
algorithm based on the Barziliai-Borwein (GPBB) formula-
tion that can handle compressed sensing type of CBCT recon-
struction based on total variation formulation in an extremely
efficient manner.40, 46 The main advantage of the GPBB ap-
proach is to use a minimal number of forward- and back-
projections per iteration all at while ensuring fast conver-
gence. By combining the GPBB approach with the massive
parallelizable ability of the GPU programming, our recent
work have shown that at least an order of magnitude faster
reconstruction speed can be achieved.40, 46

2.E. Numerical simulations and patient data

To evaluate the performance of our proposed MCIR algo-
rithm, we have used both a numerical phantom and a clinical

FIG. 2. The MCIR algorithm pseudo code. Note here that the second term of the equation in step 3-2 is the first-order gradient of Eq. (7), and sign(.) is the sign
operation which is the first-order gradient of the 1-norm term in Eq. (7).
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lung cancer patient with the x-ray projections obtained from
the TrueBeamTM system (Varian Medical Systems, Palo Alto,
CA). The results were then compared with the (1) clinical
FB-3DCBCT reconstructed from the OBITM using the FDK,
(2) 4DCBCT reconstructed with the FDK, and (3) 4DCBCT
reconstructed using the PICCS, a best-known 4DCBCT al-
gorithm to date. For the numerical phantom study, we have
used a dynamic chest phantom similar to those used in previ-
ous 4DCBCT related studies.28, 47 It is a numerical phantom
that emulates respiratory motion with two circular objects that
expand-shrink and move left-right (see Fig. 1). We first set the
breathing period to 5 s with a cosine function and acquired
600 simulated projections over 1 min of a full gantry rotation,
in a full-fan scanning geometry. We then divided and sorted
the projections into even 20 phases. This means, on average,
30 projections were used to reconstruct each phase image.

For the clinical lung cancer patient case, a total of 674 pro-
jections were acquired over 1 min gantry rotation, in a half-
fan scanning geometry, representing a typical FB-3DCBCT
clinical scan. The imager has 1024 × 768 pixels with 0.388
× 0.388 mm2 resolution. This was down-sampled to 512
× 384 pixels with 0.776 × 0.776 mm2 for the reconstructions
through two-by-two binning process. During the acquisition,
each projection data was tagged with the phase information
from the RPMTM system. Using this information, we divided
and sorted the projections into 20 phases. On average, about
34 projections were assigned to each phase. The 4DCBCT
volumes were reconstructed with 512 × 512 × 70 voxels at
the resolution level of 0.97 × 0.97 × 2.0 mm3.

3. RESULTS

Figure 3 shows numerical 4D phantom simulation results
including the ground truth images at two phases 0% and
50%, 4DCBCT reconstructed using the FDK, 4DCBCT re-
constructed using the CS, 4DCBCT reconstructed using the
PICCS, and 4DCBCT reconstructed using our MCIR algo-
rithm. In order to ensure all iterative algorithms (CS, PICCS,
and MCIR) to reach convergence as close as possible, we ran
1000 iterations for all with the same GP-BB step-size calcu-
lation approach.40, 46 Since the MCIR algorithm starts with a

FB-3DCBCT as an initial input, we have kept all initial input
as FB-3DCBCT for the CS and PICCS algorithms as well.
As is expected, a severe streaking artifacts appeared in the
4DCBCT reconstructed using the FDK algorithm [Figs. 3(b)
and 3(g)]. Visually, many of the structures in the medial aspect
of the phantom are nearly indistinguishable. 4DCBCT using
the CS algorithm [Figs. 6(c) and 6(h)] significantly mitigated
such artifacts, as expected. However, it was still evident that
anatomical structures are blurred due to some patching arti-
facts (i.e., dark-gray streaks). As for the PICCS and MCIR,
there are noticeable improvements in image quality from the
CS [Figs. 6(d) and 6(i)]. Visually, the image quality seems
nearly equivalent to each other. By taking a closer look, how-
ever, we see that the boundary of the moving balls in either
side of the phantom is slightly sharper in the MCIR algorithm.
Figure 4 shows the measured line profiles across the left ball
in the phantom, for a 50% phase image. The line profile of
the MCIR algorithm follows closest to the ground truth (see
expanded view in the subset). In digging deeper, we have cal-
culated the root mean square error (RMSE) for all 20 phase
images, which is illustrated in Fig. 5. Here, the RMSE is de-
fined as the root of the mean-squared percent error from the
ground truth pixel values:

RMSE(%) =

√√√√√√
∑
i,j,k

(x(i, j, k) − x(i, j, k)Ground truth)2

∑
i,j,k

(x(i, j, k)Ground truth)2
×100,

(9)

where, x(i,j,k) correspond to the voxel values in the recon-
structed volume and x(i,j,k)Ground truth refers to the ground truth
voxel values of the numerical chest phantom that we used in
this study. Looking at the error values for all phases, it is clear
from the figure that the level of agreement to the ground truth
is in the order of MCIR > PICCS > CS > FDK, for all phases.
The FDK algorithm had the largest RMSE of 30.0% ± 4.7%
ranging from 24.0% to 44.3%. The CS algorithm performed
much better than FDK, which had RMSE of 0.77% ± 0.13%
ranging from 0.4% to 1.14%. The RMSE for the PICCS var-
ied from 0.43% to 0.75% with an average of 0.52% ± 0.08%.
Finally, the MCIR algorithm showed the best performance

FIG. 3. A numerical 4D phantom simulation results. (a) and (f): ground truth phantom image at two phases 0% and 50%. (b) and (g): 4DCBCT reconstructed
using the FDK. (c) and (h): 4DCBCT reconstructed using the CS. (d) and (i): 4DCBCT reconstructed using the PICCS. (e) and (j): 4DCBCT reconstructed using
our MCIR algorithm.
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FIG. 4. Measured line profiles of the moving object in the 0% phase image.

with 0.43% ± 0.04% and ranged from 0.31% to 0.50%. This
finding holds true at all levels of iterations as well, as shown
in Fig. 6, where RMSE was calculated at each iterative step.
As can be seen from the figure, the MCIR algorithm needs
<100 iterations to achieve RMSE <1% from the ground truth,
whereas the CS or PICCS need many more iterations to reach
that level. This is mainly due to the fact that, unlike other al-
gorithms, the update energy is mainly focused on the mobile
voxels in our MCIR algorithm. This suggests that the MCIR
algorithm outperforms the CS and PICCS, in terms of the final
image quality (Fig. 5) and the speed of reaching the optimum
solution is also faster (Fig. 6).

In order to demonstrate the relative computational speed
for each algorithm, we have measured the time profile of the

FIG. 5. Comparison of root mean square error (RMSE) between 4DCBCT
reconstructed using the FDK, CS, PICCS, and our MCIR across all 20 phase
images.

four different algorithms implemented on a single computer,
with the same GPU and GPBB programming approaches, and
kept all conditions the same. That is, the number of itera-
tions was set to 100, the reconstruction volume was set to 512
× 512 × 70, and 20 phases. Table I lists the times achieved.
It was found that the MCIR algorithm takes slightly longer
than the others since there is an additional step for computing
the motion-map. The percentage of the total time increase,
compared to the CS and PICCS, was 6% and 2%, respec-
tively. However, since the convergence speed of the MCIR
algorithm is significantly faster than the others (Fig. 6), such

FIG. 6. Variation of RMSE calculated over each iterative step during the
4DCBCT reconstruction of 0% phase numerical phantom for the CS, PICCS,
and the MCIR algorithm. Note that FDK is omitted from the comparison
since it is not an iterative reconstruction algorithm.
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FIG. 7. (a) A coronal slice of FB-3DCBCT reconstructed using the clinical lung cancer patient data and (b) its corresponding motion-map using the proposed
motion-map reconstruction approach. The motion-map intensity is the highest across the diaphragms as intuitively expected.

a difference can be compensated by reducing the total number
of iterations while still achieving better image quality. For ex-
ample, 100 iterations with the MCIR algorithm would achieve
an RMSE <1%, whereas the CS or PICCS would need many
more iterations to reach the same level.

Figure 7 shows a coronal slice of the FB-3DCBCT recon-
structed using a clinical lung cancer patient data and its corre-
sponding motion-map generated using the proposed motion-
map reconstruction approach (in color scale from 0-1). As
we expect from our clinical experience regarding thoracic
anatomy, the motion-map intensity should be and is the high-
est around the diaphragms. It is also evident that the motion-
map inside the lungs has varying degrees of intensity as well,
which is also expected. One undesirable result, though, is that
there is also some intensity in the soft tissue on the left side
of the patient. This is due to the fact that the field of view
(FOV) in our CBCT scanner is not enough to cover all of the
patient’s anatomy and, therefore, a truncation error would ac-
cumulate when the motion-map is generated. However, this is
not an issue of concern as long as the motion-map captures
all of the relevant part of the anatomy that are moving, which
we absolutely need to visualize for 4D IGRT applications. In
addition, since the motion-map is a weighting matrix that up-
dates the initial FB-3DCBCT with phase-wise sorted projec-
tions that have already been used to reconstruct the original
FB-3DCBCT, updating the nonmobile regions with the phase-
wise sorted projections would be minimal, so there will not be
much change in that region anyway.

Figure 8 shows coronal and sagittal slices of the lung
cancer patient with the FB-3DCBCT, and the MCIR algo-
rithm at 0%-peak-exhale, 25%-mid-inhale, 50%-peak-inhale,

and 75%-mid-exhale. It is clear that the image quality of
the MCIR algorithm, at all phases, are almost equivalent to
that of the FB-3DCBCT, in terms of low contrast and noise,
but moreover, the diaphragm positions are clearly distinctive.
This confirms that although only 34 projections were used to
reconstruct each phase image, our MCIR algorithm can recon-
struct all 20 phases of the breathing cycle without the agitating
streak artifacts that are caused by insufficient projections.

Finally, Fig. 9 displays the lung cancer patient’s 50% phase
4DCBCT image reconstructed with the FB-3DCBCT (using
the FDK), 4D-FDK, MCIR, and the PICCS algorithms. As
expected, severe streaking artifacts exist in the 4D-FDK. In
contrast, both the MCIR and PICCS algorithms significantly
outperform that of the 4D-FDK. In closer visual inspection, it
is also observed that the streaking artifact is relatively further
reduced in the MCIR algorithm as compared to the PICCS.
For example, the diaphragm boundary shows reduced streaks.

4. DISCUSSION

4.A. Algorithm performance

In the evolution of lung cancer IGRT, transitioning from
the FB-3DCBCT to 4DCBCT is essential due to the fact that
the extent of tumor motion is the key information in max-
imizing the target localization accuracy.17, 18, 48–50 With the
use of conventional FDK reconstruction algorithm, the only
way to achieve this is to increase the scanning time to ac-
quire more projections, which inevitably increases the radia-
tion exposure to patients. In this study, we proposed a novel
4DCBCT reconstruction approach called the MCIR, and have

FIG. 8. Coronal and sagittal slices of the lung cancer patient of (a) and (f) FB-3DCBCT; and our proposed MCIR algorithm at (b) and (g) 0% phase; (c) and
(h) 25% phase; (d) and (i) 50% phase; and (e) and (j) 75% phase. The image qualities of MCIR at all phases are almost equivalent to that of the FB-3DCBCT,
but with the motion artifacts removed.
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FIG. 9. An axial cut of the lung cancer patient reconstructed with the FB-3DCBCT, 4D-FDK, PICCS, and the MCIR algorithm.

successfully shown that at least up to 20 high quality phase
images can be reconstructed using the same input dataset as
a single clinical CBCT scan, without increasing the imaging
dose. The main innovation comes from recognizing that when
a thoracic anatomy is subjected to respiratory motion, not all
parts of the anatomy are significantly moving. Therefore, if
we could somehow distinguish between the regions that are
moving more and less, we could reconstruct a high quality
4DCBCT by updating only the voxels with significant motion
using the corresponding phase sorted projections while keep-
ing the voxels that do not move from the FB-3DCBCT.

The results, both in numerical simulations as well as a
patient data, showed that the MCIR algorithm outperforms
many other popular-and-advanced algorithms such as the CS
and PICCS. It should be noted though that the implementation
of the CS and PICCS may not have been exactly reproduced
as the ones originally proposed and implemented, as all of
these algorithms were interpreted and written in-house. We
attempted to make the fairest comparisons by implementing
the codes as close to the publications as possible; however,
it cannot be guaranteed that the same exact performance was
observed. As a result, we fully acknowledge that our evalu-
ation of these algorithms may not represent their best possi-
ble performance, although similarities such as the well-known
patching artifact in the CS (Refs. 34, 51, and 52) was also
readily observed in our implementation.

In addition to compressed-sensing based 4DCBCT recon-
struction algorithms that we compared in this work, there are
other 4DCBCT reconstruction frameworks that attempts to
update motion-affected voxels. For example, the McKinnon-
Bates (MKB) algorithm56, 57 uses a FB-3DCBCT as a priori
image and uniformly updates the image with phase sorted pro-
jections with equal weight. Auto-adaptive phase correlation
algorithm57 weights the voxels that are moving and stationary
and interpolates the motion voxels with the motion estimated
projections within the filtered back-projection space. In con-
trast, the MCIR algorithm applies heavier weights to moving
voxels while keeping lighter weights to stationary ones.

The performance of our MCIR algorithm is heavily de-
pendent upon the quality of the FB-3DCBCT and the projec-
tion data. It was observed that when the initial quality of the
FB-3DCBCT is poor, that propagated through the subsequent
processing with the MCIR. This is, of course, quite obvious
since the MCIR algorithm updates phase-specific information
from the FB-3DCBCT as its base. Therefore, to maximize
the performance of the MCIR algorithm, it is important to
acquire high quality projection data, which will translate to

high quality FB-3DCBCT. There are numerous factors that
could affect the quality of projection data such as CBCT scan
geometry, x-ray exposure condition, and x-ray detector per-
formance, etc. Low mAs settings can be one of the reasons
of degradation in the quality due to the increase of quantum
noise, for example. Use of preprocessing techniques such as
scatter correction58, 59 and noise reduction60 approaches on
the projection data may be necessary to compensate for such
degradations. Of course, this characteristic is also applicable
to the PICCS algorithm since it uses the FB-3DCBCT as a
prior knowledge.

The MCIR algorithm involves two independent iterative
steps: (1) sub-motion-error vector, and (2) 4DCBCT calcula-
tions. In the clinical patient case, it was shown that ≤6 iter-
ations were generally sufficient to calculate the sub-motion-
error vector, and ≤80 iterations to generate the 4DCBCT. As
a result, the overall overhead for computing the motion-map
matrix is quite manageable.

4.B. Motion-map estimation

Precise motion-map estimation is also an important fac-
tor that influences the performance of the MCIR algorithm.
In this study, we proposed an effective method to obtain the
motion-map directly from the x-ray projection data. Results
showed that in both the numerical simulations and patient
case, it effectively distinguished the regions that are station-
ary and moving. One limitation observed during the clinical
patient case trial was that the accuracy of the motion-map
can be degraded due to limited physical FOV size, leading
to projection truncation error that would accumulate during
the motion-map calculation.

However, as discussed, this is not a critical issue as long
as the motion-map captures the real mobile regions of the
thoracic anatomy, which is mostly within the lungs. Since
motion-map is a weighting matrix designed to update the FB-
3DCBCT using phase-wise sorted projections that have al-
ready been reconstructed into the initial FB-3DCBCT, updat-
ing the nonmoving regions with phase-wise sorted projections
would have minimal effect in that region. Remember, the up-
date equation of the MCIR is based on Eq. (1) where a pri-
ori calculated FB-3DCBCT image voxels are updated or kept
constant depending on the subregions that are moving or sta-
tionary. The decision to update is defined by the magnitude of
the motion map matrix U. If all of the voxels within the recon-
structing region are moving, then all of the indices of U will
be at or close to 1, which will then simply degenerate to the
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conventional CS algorithm. Therefore, worst comes to worst,
if the truncation artifacts are severe enough to affect the mo-
tion map of the entire reconstructing volume, it is expected
that the resultant image would basically be equivalent to the
quality of the conventional CS algorithm.

4.C. Regularization parameters

In the MCIR algorithm, there are two different weighting
parameters that need to be assigned: (1) the TV regularization
parameter λ in Eq. (3) and (2) the one-norm regularization pa-
rameter η in Eq. (7). The former is one of the most influential
parameters affecting the image quality, that is, when λ is high,
the blurrier and smoother the images, and the smaller it is, the
sharper and noisier the images. This is due to the fact that λ

is a weighing factor of the TV regularization term in Eq. (3).
Thus, if λ is high, more emphasis is given to minimize the to-
tal variance and therefore the blurrier but smoother the look.
In opposite, if λ is low, then more emphasis will be given to
the fidelity term in Eq. (3) and therefore preserving the noise
and high frequency information.

The latter parameter η is the parameter that determines the
sparseness of the motion map. The higher this value, more
sparse the motion-map matrix (i.e., more zeros), which will
emphasize the regions that has rigorous motion, while smaller
this value, the motion-map matrix has less sparseness, giv-
ing nonzero values to regions that show relatively little move-
ment. Therefore, when the sparse motion-map matrix, U, is
uploaded in the MCIR implementation, the result would be
an image that rigorously emphasize only the voxels that has
large data inconsistency due to breathing while other regions
are left alone. Of course, it would be vice versa for the less
sparse motion-map matrices.

Although some investigators have proposed ways to op-
timize the weighting parameters directly in the iterative op-
timization process,53, 54 there is no global standard in de-
terministically calculating them. Therefore, the selection of
λ and η were subjectively picked through numerous repeat
simulations.55 In this study, we have set λ = 0.001 and
η = 0.5 for the lung cancer patient case. It is obvious that
further research is needed to find a class of optimal λ and η

values for various clinical sites and patient sizes.

4.D. Future work

In this study, we limited our investigation to one numeri-
cal phantom and a patient case. We learned that the proposed
algorithm performs relatively well compared with other pub-
lished algorithms and that reasonable quality 4DCBCT can be
reconstructed using ∼34 projections per phase, at least, with-
out major streak artifacts. Therefore, the next step is to test
this algorithm on various clinical sites not only on lung but
other moving anatomical sites such as liver or pancreas. Be-
sides optimizing the performance of the MCIR algorithm, in
terms of parameter selections, our next study will be to de-
termine the optimal CBCT scanning protocols for use with
the algorithm. We will comprehensively analyze what mini-
mal number of projections, mAs, and scanning geometry can

work with the MCIR algorithm and still produce reasonable
quality images for clinical use. Having said of all these lim-
itations and the need for further investigations, our proposed
MCIR algorithm is a promising new technique to generate a
high quality 4DCBCT without increasing the imaging dose or
scanning time, possibly enabling the frequent use of 4DCBCT
for IGRT in the (hopefully) near future.

5. CONCLUSION

In this paper, we propose a novel 4DCBCT reconstruc-
tion algorithm utilizing a motion-map constraint as part of
the framework. Up to 20 phases of clinically viable 4DCBCT
images could be reconstructed while requiring no more pro-
jection data and imaging dose than a typical clinical 3DCBCT
scan. This makes our MCIR algorithm potentially useful in an
on-line IGRT environment.
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APPENDIX: DERIVATION OF EQUATION 5

The cost function for MCIR algorithm is given by

min
xphase

f (xphase) = ‖Aphasexphase − bphase‖2
2 + λT V (xphase)

s.t. xphase ≥ 0, (A1)

where the unknown 4DCBCT volume at each phase can be
expressed as

xphase = x3D + U1/2kphase. (A2)

Assuming that FB-3DCBCT volume x3D and the diago-
nal motion-map matrix is a priori computed, the gradient of
convex function (A1) with respect to unknown vector kphase

becomes

∇f (x3D + U1/2kphase)

= 2 · (U1/2)T AT [A(x3D + U1/2kphase) − bphase]

+λ · U1/2∇TV(x3D + U1/2kphase). (A3)

The updating equation for kphase at each iteration then
becomes

kn+1
phase = kn

phase − α∇f
(
x3D + U1/2kn

phase

)
= kn

phase − α
(
2 · U1/2 AT

[
A
(
x3D + U1/2kn

phase

)
− bphase

] + λ · U1/2∇TV
(
x3D + U1/2kn

phase

))
.

(A4)
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Substituting Eq. (A4) into Eq. (1), we obtain

xn+1
phase = x3D + U1/2[kn

phase − α
(
2 · U1/2 AT

(
Axn

phase

− bphase
) + λ · U1/2∇TV

(
xn

phase

))]
= x3D + U1/2kn

phase − αU
[
2 · AT

(
Axn

phase − bphase
)

+ λ · ∇TV
(
xn

phase

)]
= xn

phase − αU
[
2 · AT

(
Axn

phase − bphase
)

+ λ · ∇TV
(
xn

phase

)]
, (A5)

which is the gradient decent algorithm for MCIR as shown in
Eq. (5).
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